MIZORAM PUBLIC SERVICE COMMISSION

General Competitive Examinations for Recruitment to the post of Junior Grade of Mizoram Forest Service i.e. Assistant Conservation of Forest (ACF) under Environment, Forest \& Climate Change Department, Government of Mizoram, 2018

MATHEMATICS

The figures in the margin indicate
full marks for the questions.
Answer any 10 (ten) questions
taking 5 (five) questions from each section.

SECTION - A

1. (a) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and hence find A^{-1}.
(b) Determine whether or not the following vectors form a basis of \mathbb{R}^{3}, $(1,1,2),(1,2,5)$ and (5,3,4).
2. (a) Compute A^{-2} where $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
(b) Using the elementary row operations, find the rank of the matrix

$$
\left[\begin{array}{cccc}
3 & -2 & 0 & -1 \tag{5}\\
0 & 2 & 2 & 1 \\
1 & -2 & -3 & -2 \\
0 & 1 & 2 & 1
\end{array}\right]
$$

3. (a) Prove that $\mathrm{B}(1, \mathrm{~m})=\frac{\Gamma(l) \Gamma(m)}{\Gamma(l+m)}$.
(b) Let $f: R^{2} \rightarrow R$ be defined by
$f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}},(x, y) \neq 0$ and $f(0,0)=0$.
Prove that f_{x} and f_{y} exist at $(0,0)$. Also prove that f is continuous at $(0,0)$.
4. (a) Show that the plane $x+2 y-z=4$ cut the sphere $x^{2}+y^{2}+z^{2}-x+z-2=0$ in a circle of radius unity and find the equation of sphere which has this circle for one of its great circle. (5)
(b) Find the equation of the right circular cylinder of radius 2 whose axis passes through ($1,2,3$) and has direction ratios $(2,-3,6)$.
5. (a) Using the method of variation of parameters, solve the differential equation $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosex} x$.
(b) Solve $\mathrm{x}^{2} \frac{d^{2} y}{d^{2} x}-2 \mathrm{x} \frac{d y}{d x}+2 y=x^{3}$.
6. (a) A particle projected with a velocity u, strikes at right angles a plane through the point of projection inclined at an angle β to the horizon. Show that the time of flight is $\frac{2 u}{g \sqrt{1+3 \sin ^{2} \beta}}$. Find also the height of the point struck above the point of projection.
(b) A particle moves with S.H.M. in a straight line. In the first second after starting from rest, it travels a distance a and in the next second it travels a distance b in the same direction. Prove that the amplitude of the motion is $\frac{2 a^{2}}{3 a-b}$.
7. (a) Prove the identity:
$\nabla(F . G)=F \times(\nabla \times G)+G \times(\nabla \times F)+(F . \nabla) G+(G . \nabla) F$
(b) Evaluate $\iint\left(y^{2} z^{2} \hat{i}+z^{2} x^{2} \hat{j}+z^{2} y^{2} \hat{k}\right) \cdot \hat{n} d S$, where S is the part of the sphere $x^{2}+y^{2}+z^{2}=1$, above the $x y$-plane and bounded by this plane.

SECTION - B

8. (a) Let S be the set of all real numbers except -1 . Define * on S by $a * b=a+b+a b$. Is $\left(S,{ }^{*}\right)$ a group? Find the solution of the equation $3 * \times * 2=8$ in S.
(b) Prove that $(\mathrm{ab})^{2}=\mathrm{a}^{2} \mathrm{~b}^{2} \Leftrightarrow \mathrm{G}$ is abelian where $\mathrm{a}, b \in G$.
9. (a) Evaluate $\iint(x+y)^{2} d x d y$ over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) What kind of singularities have the following functions:
(i) $\frac{\cot \pi z}{(z-a)^{2}}$ at $z=0, z=\infty$
(ii) $\left(\frac{z-2}{z^{2}}\right) \sin \left(\frac{1}{z-1}\right)$ at $z=0, z=1$.
10. (a) Solve by Simplex Method: Maximize $\mathrm{z}=3 \mathrm{x}_{1}+2 \mathrm{x}_{2}$,

Subject to the constraints: $x_{1}+x_{2} \leq 4, \mathrm{x}_{1}-\mathrm{x}_{2} \leq 2$, and $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$.
(b) Using the dual solve the following L.P.P.

Max. $z_{p}=3 x_{1}-2 x_{2}$,
Such that

$$
\begin{aligned}
& x_{1} \leq 4, \\
& x_{2} \leq 6, \\
& x_{1}+x_{2} \leq 5, \\
& -x_{2} \leq-1, \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

and
11. (a) Find the complete integral of the equation
$2 x z-p x^{2}-2 q x y+p q=0$
where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$
(b) Solve by Charpit's method : $(p+q)(p x+q y)=1, p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$.
12. (a) Find the polynomial $f(x)$ by using Lagrange's interpolation formula and hence find $f(3)$ for

$\mathrm{x}:$	0	1	2	5
$\mathrm{f}(\mathrm{x}):$	2	3	12	147.

(b) Solve the differential equation $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}-6 y=(x+1) e^{2 x}$
13. (a) Find a positive root of $x^{3}-2 x-5=0$, correct to 4 decimals, by Newton-Raphson method.(5)
(b) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using Trapezoidal rule.
14. (a) Derive the Lagrange's equations of motion for a holonomic dynamical system with n degrees of freedom.
(b) Show that the moment of inertia of ellipse area of mass M and semi- axis a and b about a diameter of length r is $\frac{1}{4} \mathrm{M} \frac{a^{2} b^{2}}{r^{2}}$.

